The Electromagnetic Fountain

Posts Tagged ‘electromagnetism

Sniffing in Stavanger – Little EMV sniffer

leave a comment »

This EMV sniffer was put together by Erich Berger and Martin Howse during the Maxwell City Workshop I took part in at Atelier Nord in 2007. It is based on kit components that can be purchased here.

Advertisements

Sniffing in Stavanger – Zap Checker

leave a comment »

Here’s a video of the Zap Checker detector in action where the Electromagnetic Fountain is planned to stand.

Frequency range: covers 1 MHz to 8 GHz.
Output: Audio Jack and needle display.
Antenna: Internal
Calibration: Can be calibrated for different signal ranges and for digital and analog signals.

Sniffing in Stavanger – Electrosmog Detector in the Rain!

with one comment

Here’s a video of the Electrosmog Detector in action in the rain. Its much more noisy.

EMF – Alchemic design

leave a comment »

I’m trying to find a system for designing the Electromagnetic Fountain’s water jets.

Following a stream of consciousness in this order:

Alchemy, Pentagon, Da Vinci, Giordano Bruno, Ionized hazard warning, Non-ionized hazard warning .. and so on and so forth …

Alchemic Fountain DesignAlchemic Fountain Design 2

Purple dots: valves controlled by data derived from kinetic detector/antenna no. 1 that can be pulled out by the public from the fountain base: digital signals. (frequency and amplitude – frequency: each new signal gets sent around to the next point in the triangle; amplitude defines the height of the water jet).

Pink dots: as above, but the valves are controlled by data derived from kinetic detector/antenna no. 2

Green dots: pentagon manifold with nozzles and valve/pump controlled by detected analogue signals. (continuous: amplitude defines height).

Example of square manifold:

An alternative could be to have a manifold with five fan nozzles:

fan nozzle fan nozzle pattern

With some maths, the fall of the each fan nozzle could “draw” each side of the pentagon shape. However, with this alternative I think it would lose some dynamics with regards to the height of the water jet, which would be lessened using this method.

Another alternative could be a manifold with many smaller, jet/spray valves that form the pentagon shape.

Example of a spray ring manifold:

spray ring spray ring effect

Red dot: valve/water jet that shows the total average of digital and analogue signals. Maximum total signal value threshold: all valves operate on special program.

One idea I’m thinking of for the central water feature is a pirouette nozzle:

piouette nozzle pioruette effect

But compared to the example given above, the central nozzle would have to give a more substantial – less delicate water effect. Generally, I think the overall effect of the spinning pirouette nozzle would probably detract from the water patterns I’m trying to achieve with the fountain. perhaps a simpler solution, such as a geyser/ foam nozzle is better.

foam nozzle foam effect

At the end of th day, I think its really difficult to get any substantial impression without trying things out and talking to experts. After all, how many water features can you actually fit in to a bowl fountain with a 2m diameter?

Lastly, I am really keen on having a fogger element in the EMF when the detected signal level reaches a maximum threshold. Here’s an extract from an article that describes different fogger methods – and an anecdote about what happened when the method was first implemented in the Bellagio Fountain in Las Vegas:

Fog on demand
Another element used in fountains to set the mood is fog created either by atomizing water or adjusting temperature and humidity. To use the first method, WET Design sends water at 2,000 psi and 0.05 gpm through a 0.006-in. nozzle. The water hits a steel pin positioned precisely over the hole’s center and bursts into tiny water particles making mist or fog. “In small close-up displays, we might use 30 nozzles,” notes Freitas. “Bellagio has 5,000.”

The second method usually involves injecting cool nitrogen into a chamber filled with warm, supersaturated air. The water condenses into airborne water droplets, or fog. The nitrogen expands, pushing the fog out into the display. “It’s a drier, finer mist than the brute force method,” says Freitas. “It also doesn’t make floors slippery or leave a residue. This makes it well suited for indoor use. But it does have a consumable, the nitrogen.”

How long the fog lasts and what it does is up to Mother Nature. “Once we create it, it’s out of our hands,” says Freitas. “When we tested Bellagio’s fog system, for example, it created a great bank of fog that started moving toward the road. Before we knew it, fog had engulfed the Strip. Drivers were slamming on the brakes, tires were squealing, and we expected to see a hundred-car pile up. Luckily, there were no collisions and no one got hurt.” That’s one reason human operators at the Bellagio fountain can intervene in the computer programming that controls the foggers.
[ from: Making Water Dance, Machine Design, 01.08.2003 ]

Written by ajsteggell

May 19, 2008 at 12:33 am

Electromagnetic Waves and Antennas

leave a comment »

Electromagnetic Waves and Antennas
by
Sophocles J. Orfanidis
ECE Department
Rutgers University

[ …. This book provides a broad and applications-oriented introduction to electromagnetic waves and antennas. Current interest in these areas is driven by the growth in wireless and fiber-optic communications, information technology, and materials science…… ]

You can download individual chapters at: http://www.ece.rutgers.edu/~orfanidi/ewa/

Written by ajsteggell

May 7, 2008 at 10:53 am

Amplitude modulation explained

leave a comment »

Here’s a tutorial from Radioteacher explaining Amplitude Modulation:

Written by ajsteggell

March 23, 2008 at 7:44 pm

Frequency modulation explained

leave a comment »

Here’s a tutorial video by Radioteacher explaining Frequency Modulation:

Written by ajsteggell

March 23, 2008 at 7:41 pm